Entrainment of free water into hydraulic systems through the rod sealing

Mielke, Tobias
Schmitz, Katharina
Murrenhoff, Hubertus
Motivation

Oil ageing through hydrolysis and oxidation
\[\text{Ester} + \text{H}_2\text{O} \leftrightarrow \text{Alcohol} + \text{Acid} \]

Compatibility on seals
- Swelling
- Decomposition

Oxidation of metals

Water entry into hydraulic systems

Dynamic Seals
\textit{(relative movement)}

Danger of steam cavitation
- \textit{Vapour pressure (50 °C)}
 - Oil: \(4.7 \cdot 10^{-8}\) bar
 - Water: 0.12 bar

Poor lubricity
- Hydrodynamic wear

\[\eta(40 \, ^\circ\text{C}) \approx 0.65 \, \text{mPas} \]
\[\eta(40 \, ^\circ\text{C}) \approx 39.1 \, \text{mPas} \]

Ice crystals at \(T < 0 \, ^\circ\text{C} \)

Tank lid (spray, breathing)
Entrainment potential of rod seals

- Film height greater during retraction than extension (when excessively lubricated)
- Difference can be filled up with water
- → Entrainment potential

Nißler, U., „Dichtheit von Hydraulikstangendichtringen aus Polyurethan”, 2015
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Test bench</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Commissioning of test bench</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Test results</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and outlook</td>
<td></td>
</tr>
</tbody>
</table>
Test bench concept

- Prechambers for test fluid supply
- Entrained water increases fluid volume
- \rightarrow Piston is displaced
- Pressure is set by hydro-accumulator
- Temperature sensors in front of seals
Entrainment sensor

Pressure [bar]

Displacement [mm]

Back pressure [bar]

Displacement [mm]

Hydro-accumulator

Back pressure

Pressure

Δx
Temperature impact

- Temperature rise during operation due to friction in sealing and guide rings
 - Volume expansion of oil leads to thermal induced stroke
- Determine the actual gradient through heating tests
- Used gradient $3.5 \frac{mm}{K}$ (Standard deviation: 3.9 %)

\[
\Delta V_{\text{thermal}} = V_0 \cdot \gamma \cdot (T - T_{\text{Start}}) = A_{\text{piston}} \cdot \Delta x_{\text{thermal}}
\]

\[
\Delta x_{\text{thermal}} = \left(\frac{dx}{dT}\right)_A (T - T_{\text{Start}})
\]
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Test bench</td>
</tr>
<tr>
<td>3</td>
<td>Commissioning of test bench</td>
</tr>
<tr>
<td>4</td>
<td>Test results</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
First odd measurement results

- Measurement carried out for oil and water supplied outside the seals
 - Oil: is entrained into the system through the sealing
 - Water: loss of fluid volume out of the chamber
- Possible explanation: Oil film on rod is detached while water is supplied
Design change

- Modified water supply
 - Water runs pressure free onto the rod in front of seals
 - Water flow is kept constant by maintaining a constant level height

\[
\text{const.}
\]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Test bench</td>
</tr>
<tr>
<td>3</td>
<td>Commissioning of test bench</td>
</tr>
<tr>
<td>4</td>
<td>Test results</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
Test results

- Velocity and Temperatur have only minor impact
- Main impact is pressure
- Higher pressure → seal is harder pressed against rod → water is better wiped off
| 1 | Motivation |
| 2 | Test bench |
| 3 | Commissioning of test bench |
| 4 | Test results |
| 5 | Conclusion and outlook |
Conclusion and outlook

- Water entrainment potential of rod seals
- Test bench concept
- Thermal induced stroke
- Measurement results
 - Main impact on water entrainment is pressure
- Investigation of other sealing concepts
 - Double sealing concept
 - Groove ring
- Investigation of the impact of wipers on the water entrainment

\[\frac{dx}{dT} = 3.31 \text{ mm/K} \]
Thank you for your attention!

Contact:
Mielke, Tobias
Tobias.Mielke@ifas.rwth-aachen.de