

Entrainment of free water into hydraulic systems through the rod sealing

Mielke, Tobias

Schmitz, Katharina Murrenhoff, Hubertus

11ifK Motivation

Oil ageing through hydrolysis and oxidation Ester + $H_2O \leftrightarrow Alcohol + Acid$

1ifk Entrainment potential of rod seals

- Film height greater during retraction than extension (when excessively lubricated)
- Difference can be filled up with water
- → Entrainment potential

Nißler, U., "Dichtheit von Hydraulikstangendichtringen aus Polyurethan", 2015

1	Motivation
2	Test bench
3	Commissioning of test bench
4	Test results
5	Conclusion and outlook

11ifK Test bench concept

- Temperature rise during operation due to friction in sealing and guide rings
 → Volume expansion of oil leads to thermal induced stroke
- Determine the actual gradient through heating tests
- Used gradient 3.5 $\frac{mm}{\kappa}$ (Standard deviation: 3.9 %)

$$\Delta V_{thermal} = V_0 \cdot \gamma \cdot (T - T_{Start}) = A_{piston} \cdot \Delta x_{thermal}$$
$$\Delta x_{thermal} = \left(\frac{dx}{dT}\right)_A \cdot (T - T_{Start}))$$

1	Motivation
2	Test bench
3	Commissioning of test bench
4	Test results
5	Conclusion and outlook

First odd measurement results

- Measurement carried out for oil and water supplied outside the seals
 - Oil: is entrained into the system through the sealing
 - Water: loss of fluid volume out of the chamber
- Possible explanation: Oil film on rod is detached while water is supplied

- Modified water supply
 - Water runs pressure free onto the rod in front of seals
 - Water flow is kept constant by maintaining a constant level height

1	Motivation
2	Test bench
3	Commissioning of test bench
4	Test results
5	Conclusion and outlook

- Velocity and Temperatur have only minor impact
- Main impact is pressure
- Higher pressure → seal is harder pressed against rod → water is better wiped off

1	Motivation
2	Test bench
3	Commissioning of test bench
4	Test results
5	Conclusion and outlook

Conclusion and outlook

- Water entrainment potential of rod seals
- Test bench concept
- Thermal induced stroke
- Measurement results
 - → Main impact on water entrainment is pressure
- Investigation of other sealing concepts
 - Double sealing concept
 - Groove ring
- Investigation of the impact of wipers on the water entrainment

Thank you for your attention!

Contact: Mielke, Tobias Tobias.Mielke@ifas.rwth-aachen.de

