Proportional pressure reducing valves with intrinsic fail safe function

Dr. Jörg Schneider
Dr. Jens Krallmann
Daniel Ferres
1 Introduction and Motivation
2 PPRVs as pilot valves for sectional valves
3 Functional principle of Fail Safe versions
4 Limits and Restrictions
5 Influence on functional safety ratings
6 Summary
THOMAS Mobilhydraulic history:
First cartridge valve development in 1996

PPRV: 3/2-way proportional pressure reducing valve

PPCD04
Proportional Pressure Control
Direct operated
04 = flow capacity
Introduction and Motivation

What to do for continuous improvements?

1) Higher performance and/or more compact and/or more cost efficient design

Standard PPRV \[\rightarrow\] High Performance Valve \[\rightarrow\] New Generation

2006 \[\rightarrow\] 2017
What to do for continuous improvements?

2) Integration of more functionality

2017

Standard PPCD04

Fail Safe version
PPRVs as pilot valves for sectional valves

Functional principle of a PPCD04
PPRVs as pilot valves for sectional valves

Functional principle of a PPCD06

![Diagram of PPCD06](image)
PPRVs as pilot valves for sectional valves

Safe situation for implement functions with electrohydraulically driven sectional valve

\[P_C < P_{SF} \rightarrow \text{Safe Situation} \]
Functional principle of Fail Safe versions

PPCD04

\[P_p \]

\[P_C < P_{SF} \]

Tank

armature bar
Functional principle of Fail Safe versions

PPCD06

$P_C < P_{SF}$

P_P

Tank

pressure pin
Functional principle of Fail Safe versions

- Spool stuck open (125 μm thick wire)

- Current
- Control Pressure
- Supply Pressure

Time [sec]
Current [mA]
Pressure [bar]
Functional principle of Fail Safe versions

First Design

Filter: mesh width of 125 μm

Final Design

Flow restricting bore
Limits and Restrictions

Remaining control pressure depending on pump pressure and orifice-Ø

PPCD04

\[P_C [\text{bar}] \]

\[P_P [\text{bar}] \]

orifice- Ø [mm]

- 0-4
- 4-8
- 8-12
- 12-16
- 16-20
Limits and Restrictions

Dynamic limitation by pump port orifice

PPCD04

<table>
<thead>
<tr>
<th>orifice-Ø in P-Port [mm]</th>
<th>filling time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>no orifice</td>
<td>Vol. = 6 ml</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

3/20/2018

Schneider, Jörg
Limits and Restrictions

Dynamic limitation and residual pressure

- Filling time PPCD06
- Filling time PPCD04
- Residual pressure PPCD06
- Residual pressure PPCD04

Vol. = 6 ml

Orifice-Ø in P-Port [mm]
Influence on functional safety ratings

Electrohydraulic Actuator

- CAN Signal as input command
- Position feedback signal by hall sensor
- Rated according to ISO13849

MTTFd = 150 year
Influence on functional safety ratings

Reliability model for the main Safety Function:
Both pilot valves are generating a pilot pressure below \(P_{SF} \) if neutral position is commanded
Influence on functional safety ratings

Possible failure modes due to table C.6 in ISO 13849

Detectable and EHA can be brought into safe state

MTTF_D = \sum \frac{1}{MTTF_Dj} = \sum \frac{\eta_j}{MTTF_Dj}

DC_avg = \sum DC_j * MTTF_D_j / MTTF_D

DC_avg 84 %

MTTF_D 29,1 years

Pilot Valve

150 years

67%

Pilot Valve 2x

Safety and Protection Transducer

PLC

3/20/2018
Schneider, Jörg
Summary

Introduction of valves with fail safe function

Discussion of limits and restrictions

Positive effects on functional rating of systems with integrated fail safe valves
Thank you for your attention!

Contact:
Dr. Jörg Schneider
Thomas Magnete GmbH
Email: joerg.schneider@thomas-magnete.com