

Computer-assisted modeling and automatic controller adjustment for hydraulic drives based on an innovative nonparametric identification method

Helmke, Marcus Ströbel, Simon Anders, Prof. Dr.-Ing. Peter Schulze, Tobias

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

1	Introduction and motivation
2	Observed drive system
3	Modeling, identification and optimization
4	Adaption of the feedback control parameters
5	Summary and conclusion

- pressure control for drawing cushion requires highly dynamic behavior
- solution:

feedforward controller + feedback controller (90%) (10%)

white box model

time

configuration effort

black box

3

model

new method

quality

solution: innovative method of identifying characteristic diagram with less effort

11:FK Observed drive system

- try-out press Müller-Weingarten ZE2100.45.2.2
- 4 separate ram cylinders
- _ accumulator drive for forming stroke
- 8 separate pressure cylinders for drawing cushion

Year of manufacture	2006
Ram (force, stroke)	21.000 kN, 1500 mm
Speed (pressing, rapid down)	500 mm/s, 350 mm/s
Cushion (force, stroke)	6.000 kN, 350 mm

drawing cushion

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

11:FK Observed drive system

Drawing cushion in detail

- _ drive axis consists of plunger and highly dynamic control valve
- _ movement of drawing cushion is impressed by ram
- _ pressure build up through fluid compression
- valve regulates pressure via discharging plunger

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

Modeling, identification and optimization of the drive characteristic diagram

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

11:FK Mo

Modeling, identification and optimization of the drive characteristic diagram

Solution

- _ measuerement based optimization of white box model
- _ white box model = qualitatively plausible description of CD
- _ correction of white box model with few (N ≈ 10-15 or even less) black box obser.
- _ optimization of **CD** via **NRBF** (Normalized Radial Basis Function Network)

Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

11:FK

Modeling, identification and optimization of the drive characteristic diagram

Fluidtechnik

TU Dresden

3/21/2018

Helmke, Marcus / Ströbel, Simon

Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

8

HOCHSCHULE FURTWANGEN UNIVERSITY

1iFK Modeling, identification and optimization of the drive characteristic diagram

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

Modeling, identification and optimization of the drive characteristic diagram

1iFK Operating point-dependent adaptation of the feedback control parameters

Controller design

General observations

- _ PI-controller "sees" piston as stationary
- _ pressure adapts set course "miraculously by itself"
- hydraulic capacity nevertheless changes over time

Operating point-dependent adaptation of the feedback control parameters

Linearized control system

$$G_S(s) = \frac{p(s)}{u(s)} = \frac{K_S}{T_S \cdot s + 1}$$

PI-controller

$$G_R(s) = \frac{K_R}{K_R} \cdot \frac{T_{ZR} \cdot s + 1}{s}$$

Feedback control parameters

Parameters can be designed/adapted with the help of

- piston position x (\rightarrow current hydraulic capacity)
- characteristic diagram gradients $K_p = dQ/dp$ and $K_u = dQ/du$

Dynamics are only limited by dynamics of actuator (valve time constant T_{v})

111FK Operating point-dependent adaptation of the feedback control parameters

Operating-point dependent parameter adaption

a) Estimation of valve timeconstant

b) Calculation of linearization parameters / gradients

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias

11:FK Summary and conclusion

Feedforward controller

- _ very good results using stationary **CD** as model-based feedforward control
- _ only few measured data needed for identifying CD
- _ reduced effort for identification of **CD** (around 10% of original value)

Feedback controller

_ operating point-dependent adaption of feedback control parameters

2DOF control design can be considered as a coherent and logical overall concept.

Both methods are not limited to hydraulic presses and can be transferred to other drive systems.

Thank you for your attention!

Contact:

Marcus Helmke Simon Ströbel Tobias Schulze +49 7425 228 661 +49 7461 1502 6612 +49 351 463 42603 tobias.schulze2@tu-dresden.de marcus.helmke@trsystems.de simon.stroebel@hs-furtwangen.de Prof. Dr.-Ing. Peter Anders +49 7461 1502 6620 peter.anders@hs-furtwangen.de TU Dresden Institute of Fluid Power Furtwangen University, **TRsystems GmbH** Chair of Fluid-Mechatronic Tuttlingen Campus, Eglishalde 16 Systems (Fluidtronics), Faculty of Industrial Engineering, 78647 Trossingen Helmholtzstraße 7a, Kronenstraße 16. Germany 01069 Dresden, Germany 78532 Tuttlingen, Germany

3/21/2018 Helmke, Marcus / Ströbel, Simon Anders, Prof. Dr.-Ing. Peter / Schulze, Tobias