

A Hydraulic Hybrid Architecture combining an Open Center with a Constant Pressure System for Excavators

Hijikata Seiji

- 1 Introduction
- 2 Design of New System
- 3 Simulation
- 4 Conclusion and Outlook

Introduction of Hydraulic Systems

Reference

Three Pump Open Center System

- High efficiency of hydraulic system
- Energy can not be recuperated.
- Large idle losses

Constant Pressure System

- High efficiency of engine operation
- Energy can be recuperated.
- Large number of the valves

To design a new hybrid sytem which combines open center with constant pressure system

- 1 Introduction
- 2 Design of New System
- 3 Simulation
- 4 Conclusion and Outlook

Basic Principles of New System

High efficiency engine operation

Recuperating energy

Basic Principles of New System

New System

Flow rate is provided by pump directly.

2 pump open center valves are used.

Levelling Cycle

Data Analysis of Levelling Cycle

Hydraulic Circuit of New System

The number of valves can be reduced by using the open center valves.

- 1 Introduction
- 2 Design of New System
- 3 Simulation
- 4 Conclusion and Outlook

Simulation – Cycle Power Analysis

Sankey Diagram for System Efficiency

Engine Operation with Efficiency Map

The new system shows potential 30 % less fuel compared to three pump open center system.

- 1 Introduction
- 2 Design of New System
- 3 Simulation
- 4 Conclusion and Outlook

Conclusion and Outlook

Conclusion

- Basic principles for the new system was shown with analysis of measurement data.
- The hydraulic circuit for the new system was explained.
- The new system has consumed 30 % less fuel than three pump open center system.

Outlook

Experiments will be conducted with a test rig.

Thank you for your attention!

Contact:

- •RWTH Aachen University Institute for Fluid Power Drives and Systems (IFAS) Campus-Boulevard 30, 52074 Aachen, Germany
- •E-Mail: Seiji.Hijikata@ifas.rwth-aachen.de

