

2003 plus – A New Design of Electro-hydraulic Safety Controls for Critical Applications

Weishaupt, Edgar

MooN-Safetycontrol – Application

Standard 2003

Typical 2003-Block

- 4/2-way spool valve
- Each valve has
 4 connections and
 2 parallel hydraulic
 channels, connected
 mechanically
- each hydraulic channel has 2 valves
 connected in series in different flow paths (P → A and B → T)
- One failure results in a 2002 voting architecture

Enhanced concept 2003 plus

B1 A2 ---- Electrical coupling

- Eliminate the mechanical couplings of the control openings by the use of six individual 2/2-way poppet valves
- Valves controlled electrically in pairs in different hydraulic channels
- One failure results in the failure of only one hydraulic channel

Enhanced concept 2003 plus

Advantages

- Fast switching times support rapid actuator discharging
- Poppet design effectively prevents leakage during normal operation; suitable for accumulator-based applications
- Increased range of flow rates combined with solenoid operation; may eliminate the need for piloted slip-in cartridge valves in some cases
- Compact and light-weight manifold design
- Reduced component costs
- Minimised internal cavity volume prevents pressure collapse; suitable for large operating pressure range from as low as 6 bar up to 250 bar
- Wide ambient temperature range (-20..60 °C, with special measures up to 80 °C)
- Robust against oil contamination, moderate cleanliness requirements (20/18/15 acc. to ISO 4406)
- No requirements on installation position/orientation

Testing procedure

- Enable testing set-up
- Check standby state

- De-energise one logic channel (e.g. valve pair A1/A2)
- Check valve states
- Re-energise that channel
- Check standby state again

Interface-Box adapts the manifold to standard 2003 controller

operation

No software or other complex elements

Easy exchange of diagnostic module during

Modular manifold design

- Components
 - Standard poppet valves WS(M) in scaled sizes DN6..DN20
 - pressure switch EDS 4448
- Modular design
- Each hydraulic channel in one valve plate
- Easy adaptation to installation requirements
 - Direct flange mounting
 - Piping connection
- Easy addition of secondary functions
- Possibility of different voting architectures

Possible MooN voting configurations

MooN voting	No. of	Valve set-up		HFT	HFT	Valve	Annotations on
	slabs x valves	Slab	3	(d) ¹	(s) ¹	diagnostic test	valve diagnostic test
1001	1 x 1	A1	Ĭ.	0	0	no	not available
1001 <i>plus</i> (1001 x 2002)	1 x 2	A1 A2 A2	<u> </u>	0	1	yes²	deenergising of single valves for test only
1002	2 x 1	A1 B1		1	0	no	not available
1002 <i>plu</i> s (1002 x 2002)	2 x 2	A1 B1 A2 B2		12	12	yes²	deenergising of single valves for test only
2002	1 x 2	A1 B1		0	1	yes	deenergising of single valves
2002 <i>plu</i> s (2002 x 2002)	2 x 2	A1 B1 B2 A2	——————————————————————————————————————	12	12	yes	deenergising of valve pairs
1003	3 x 1	A1 B1	C1	2	0	no	not available
1003 <i>plu</i> s (1003 x 2002)	3 x 2	A1 B1 A2 B2	C1	24	24	yes²	deenergising of single valves for test only
2003plus	3 x 2	A1 B1 C2 A2	C1 B2	24	24	yes	deenergising of valve pairs

¹ Hardware Fault Tolerance of hydraulic part towards dangerous (d) or safe (s) failures, respectively

² if valves are operated accordingly during test, deviating from normal operation

Additional functionality

Explosion proof version

- Ex-proof solenoids on the basis of HYDAC EX-1516 (increased safety)
- Ambient temperature range -20..+60 °C

System performance

Evaluation of functional safety

- Calculation based on methods of IEC 61508
- Contribution of common cause failure (CCF) dominant because two valves won't fail independently at the same time
- Combines the advantages of the 1003 architecture and of the 2003 architecture
- Combines advantages of increased Hardware Fault Tolerance (HFT) and diagnostic testing
- HFT at least 2

Advantages – increased reliability

- Proven and reliable poppet valve technology → lower sensitivity to contamination and susceptibility to failure as spool valves
- Suitability for SIL 3, certified by TÜV Rheinland
- Better PFD values despite larger number of components
- Higher hardware fault tolerance than conventional 2003 systems, both in terms of dangerous (security) and safe (availability) errors.
 Lower susceptibility to common cause errors.

 2 to 4 dangerous faults permitted, depending on the position of the failures

1 to 3 safe errors allowed;
 with 2 valve failures still 80% availability

Thank you for your attention!

Contact:

Dr. Edgar Weishaupt
 Hydac Systems & Services GmbH
 Edgar.Weishaupt@hydac.com

