

A comparative study on dither signals and their parameterisation

Reinertz, Olivier

- Especially relevant for
 - Open loop Pulse Width Modulation (PWM)
 - Closed loop current control

[Bosch Rexroth]

1	Open Loop PWM Control
2	Closed Loop Current Control
3	Parameterisation Rules & Experimental Validation
4	Conclusion

Benefit

Simple and inexpensive

Disadvantages

- Deviation in output force due to electro-mechanical disturbances
 - Change in resistance over temperature

- PWM frequency f_{PWM}
- Driving voltage
- Suppressor voltage

Open Loop PWM Control

Disadvantages

- Deviation in output force due to electro-mechanical disturbances
 Change in registered over temperature
 - Change in resistance over temperature
- Slow current build-up (first order)
- Changing dynamic excitation

- PWM frequency f_{PWM}
- Driving voltage
- Suppressor voltage
- To prevent system from oscillations
 - $\rightarrow f_{PWM}$ > coil's natural frequency

Open Loop PWM Control - Excitation

Observation

 Maximum amplitude at D = 50%

Optimisation

Narrow operational range around *D* = 50%
→ Reduced change in excitation over the command signal *d*

Open Loop PWM Control - Excitation

1 Open Loop PWM Control

2 Closed Loop Current Control

3 Parameterisation Rules & Experimental Validation

4 Conclusion

|--|

Force independent on coil resistance

Disadvantage

More expensive

- Dither frequency
- Dither amplitude

Closed Loop Current Control

- Force independent on coil resistance
- Fast response
- Minimal system immanent excitation
- Defined constant dither

More expensive

- Dither frequency
- Dither amplitude

1	Open	Loop	PWM	Control
---	------	------	-----	---------

2 Closed Loop Current Control

3 Parameterisation Rules & Experimental Validation

4 Conclusion

11.FK

Parameterisation Rules – Open loop PWM

Maximum duty cycle $D_{max} = \frac{i_{max} \cdot R + u_{Suppr}}{u_{Supply} + u_{Suppr}}$ f_{PWM} for a given current amplitude Rough approximation for constant inductance L $f_{PWM} = \frac{u_{Supply} + u_{Suppr}}{8L\hat{i}}$ f_{PWM} for constant current amplitude *f*_{PWM, DS} given for specific voltages $f_{PWM} = \frac{u_{Supply} + u_{Suppr}}{u_{Supply,DS} + u_{Suppr,DS}} \cdot f_{PWM,DS}$

PRV with constant pressure amplitude

$$\hat{p} \approx \frac{\hat{\iota}}{f_{PWM}^2}$$

$$f_{PWM} = \sqrt[3]{\frac{u_{Supply} + u_{Suppr}}{u_{Supply,DS} + u_{Suppr,DS}}} \cdot f_{PWM,DS}$$

*f*_{Dither}

 Dither frequency smaller than open loop PWM frequency

A_{Dither}

- For proportional valves up to 10% of maximum current
- For servo valves 2-5%

Current Controller

- Sufficient control gain required for the dither signal to be active
- Sufficient voltage headroom required

f_{PWM}

- Several kilohertz
- At least 5-10 times the dither frequency

Validation of the Open Loop Parameterisation

Test object:

11ifK

HYDAC Pressure reducing valve (Type PDMC05S30A-11)

Maximum current	950 mA
Inductance (no load)	105 mH
Resistance (coil + shunt)	10.5 Ω + 0.5 Ω
Rated supply voltage	24 V
Rated PWM frequency	110 Hz
Outlet pressure range	0 - 35 bar above Tank

• Test-rig:

Parameter set	А	В	С	D
Supply voltage	12 V	18 V	24 V	24 V
Suppressor voltage		0.7 V (Diode)		12 V Z-Diode
Maximum Duty-Cycle	88 %	60 %	45 %	62 %

11:FK Current Amplitude (with variable Inductance *L(i)*)

Parameter set	А	В	С	D
Supply voltage	12 V	18 V	24 V	24 V
Suppressor voltage	0.7 V (Diode)			12 V Z-Diode
Maximum Duty-Cycle	88 %	60 %	45 %	62 %
PWM Frequency	90 – 120 Hz	100 – 130 Hz	100 - 200 Hz	100 - 200 Hz

Parameter set	А	В	С	D
Supply voltage	12 V	18 V	24 V	24 V
Suppressor voltage		0.7 V (Diode)		12 V Z-Diode
Maximum Duty-Cycle	88 %	60 %	45 %	62 %
PWM Frequency	104 Hz	118 Hz	130 Hz	147 Hz

4	Conclusion
3	Parameterisation Rules & Experimental Validation
2	Closed Loop Current Control
1	Open Loop PWM Control

- Two widely used electronic control schemes for electromechanical valve actuators have been presented
- Parameters for the dynamic excitation depend on control design
- Fundamental parameterisation rules for open loop PWM and closed loop current control have been shown and validated

Open loop PWM

- Simple implementation
- Lower dynamics
- Changing dynamic excitation over duty cycle
- Temperature drift

Closed loop current control

- Better dynamics
- Smaller temperature drift
- Constant dynamic excitation
- More complex

Thank you for your attention!

Contact:

Reinertz, Olivier Olivier.Reinertz@ifas.rwth-aachen.de

